翻訳と辞書
Words near each other
・ Cotinis sphyracera
・ Cotinis subviolacea
・ Cotinis viridicyanea
・ Cotinus
・ Cotinus coggygria
・ Cotinus obovatus
・ Cotinusa
・ Cotiote War
・ Cotiporã
・ Cotiso
・ Cotiujeni
・ Cotiujenii Mari
・ Cotiujenii Mici
・ Cotkytle
・ COTL1
Cotlar–Stein lemma
・ Cotleigh
・ Cotler
・ Cotley Castle
・ Cotley River
・ Cotman v Brougham
・ Cotman's Ash
・ Cotmanhay
・ Cotmeana
・ Cotmeana River
・ COTN
・ Cotnari
・ Cotnari River
・ Cotner College
・ Cotness


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cotlar–Stein lemma : ウィキペディア英語版
Cotlar–Stein lemma
In mathematics, in the field of functional analysis, the Cotlar–Stein almost orthogonality lemma is named after mathematicians Mischa Cotlar
and Elias Stein. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into another
when the operator can be decomposed into ''almost orthogonal'' pieces.
The original version of this lemma
(for self-adjoint and mutually commuting operators)
was proved by Mischa Cotlar in 1955 and allowed him to conclude that the Hilbert transform
is a continuous linear operator in L^2
without using the Fourier transform.
A more general version was proved by Elias Stein.
==Cotlar–Stein almost orthogonality lemma==
Let E,\,F be two Hilbert spaces.
Consider a family of operators
T_j, j\ge 1,
with each T_j
a bounded linear operator from E to F.
Denote
: a_=\Vert T_j T_k^\ast\Vert,
\qquad b_=\Vert T_j^\ast T_k\Vert.
The family of operators
T_j:\;E\to F, j\ge 1,
is ''almost orthogonal'' if
:A=\sup_\sum_\sqrt\sum_\sqrtT_j
converges in the strong operator topology,
and that
:\Vert \sum_T_j\Vert \le\sqrt.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cotlar–Stein lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.